Helping nonexperts build advanced generative AI models
MosaicML, co-founded by an MIT alumnus and a professor, made deep-learning models faster and more efficient. Its acquisition by Databricks broadened that mission.
Learn about artificial intelligence, GPT usage, prompt engineering and other technology news and updates from Land of GPT. The site aggregates articles from official RSS feeds under their original authorship. Each article has a do-follow link to the original source.
MosaicML, co-founded by an MIT alumnus and a professor, made deep-learning models faster and more efficient. Its acquisition by Databricks broadened that mission.
The program focused on AI in health care, drawing on Takeda’s R&D experience in drug development and MIT’s deep expertise in AI.
LLMs trained primarily on text can generate complex visual concepts through code with self-correction. Researchers used these illustrations to train an image-free computer vision system to recognize real photos.
The SPARROW algorithm automatically identifies the best molecules to test as potential new medicines, given the vast number of factors affecting each choice.
Combining natural language and programming, the method enables LLMs to solve numerical, analytical, and language-based tasks transparently.
The method uses language-based inputs instead of costly visual data to direct a robot through a multistep navigation task.
DenseAV, developed at MIT, learns to parse and understand the meaning of language just by watching videos of people talking, with potential applications in multimedia search, language learning, and robotics.
The technique characterizes a material’s electronic properties 85 times faster than conventional methods.
In the new economics course 14.163 (Algorithms and Behavioral Science), students investigate the deployment of machine-learning tools and their potential to understand people, reduce bias, and improve society.
With generative AI models, researchers combined robotics data from different sources to help robots learn better.