Researchers reduce bias in AI models while preserving or improving accuracy
A new technique identifies and removes the training examples that contribute most to a machine-learning model’s failures.
Learn about artificial intelligence, GPT usage, prompt engineering and other technology news and updates from Land of GPT. The site aggregates articles from official RSS feeds under their original authorship. Each article has a do-follow link to the original source.
A new technique identifies and removes the training examples that contribute most to a machine-learning model’s failures.
Research from the MIT Center for Constructive Communication finds this effect occurs even when reward models are trained on factual data.
Using LLMs to convert machine-learning explanations into readable narratives could help users make better decisions about when to trust a model.
Researchers develop “ContextCite,” an innovative method to track AI’s source attribution and detect potential misinformation.
Researchers have developed a web plug-in to help those looking to protect their mental health make more informed decisions.
MIT engineers developed the largest open-source dataset of car designs, including their aerodynamics, that could speed design of eco-friendly cars and electric vehicles.
Researchers propose a simple fix to an existing technique that could help artists, designers, and engineers create better 3D models.
This new device uses light to perform the key operations of a deep neural network on a chip, opening the door to high-speed processors that can learn in real-time.
The method could help communities visualize and prepare for approaching storms.
The technique could make AI systems better at complex tasks that involve variability.