Can robots learn from machine dreams?
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI's potential for creating robotics training data.
Learn about artificial intelligence, GPT usage, prompt engineering and other technology news and updates from Land of GPT. The site aggregates articles from official RSS feeds under their original authorship. Each article has a do-follow link to the original source.
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI's potential for creating robotics training data.
Yiming Chen ’24, Wilhem Hector, Anushka Nair, and David Oluigbo will start postgraduate studies at Oxford next fall.
A new design tool uses UV and RGB lights to change the color and textures of everyday objects. The system could enable surfaces to display dynamic patterns, such as health…
The new Tayebati Postdoctoral Fellowship Program will support leading postdocs to bring cutting-edge AI to bear on research in scientific discovery or music.
Inspired by large language models, researchers develop a training technique that pools diverse data to teach robots new skills.
By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
A new method can train a neural network to sort corrupted data while anticipating next steps. It can make flexible plans for robots, generate high-quality video, and help AI agents…
Associate Professor Julian Shun develops high-performance algorithms and frameworks for large-scale graph processing.
MIT CSAIL researchers created an AI-powered method for low-discrepancy sampling, which uniformly distributes data points to boost simulation accuracy.
New dataset of “illusory” faces reveals differences between human and algorithmic face detection, links to animal face recognition, and a formula predicting where people most often perceive faces.